Abstract

Receiver protectors (RPs) shield sensitive electronics from high-power incoming signals that might damage them. Typical RP schemes range from simple fusing and PIN diodes, to superconducting circuits and plasma cells - each having a variety of drawbacks ranging from unacceptable system downtime and self-destruction to significant insertion losses and power consumption. Here, we theoretically propose and experimentally demonstrate a unique self-shielding RP based on a coupled-resonator-microwave-waveguide (CRMW) with a topological defect being inductively coupled to a diode. This RP utilizes a charge-conjugation (C) symmetric resonant defect mode that is robust against disorder and demonstrates high transmittance at low incident powers. When incident power exceeds a critical value, a self-induced resonant trapping effect occurs leading to a dramatic suppression of transmittance and a simultaneous increase of the reflectance close to unity. The proposed RP device is self-protected from overheating and electrical breakdown and can be utilized in radars, reflection altimeters, and a broad range of communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.