Abstract
This study presents a unique and straightforward room temperature-based wet-chemical technique for the self-seeding preparation of three-dimensional (3D) hierarchically branched rutile TiO2, abbreviated HTs, employing titanate nanotubes as the precursor. In the course of the synthesis, spindle-like rutile TiO2 and the intermediate anatase phase were first obtained through a dissolution/precipitation/recrystallization process, with the former serving as the substrates and the latter as the nucleation precursor to growing the branches, which finally gave birth to the production of 3D HTs nanostructures. When the specifically created hierarchical TiO2 was used as the photoanode in dye-sensitized solar cells (DSCs), a significantly improved power conversion efficiency (PCE) of 8.32% was achieved, outperforming a typical TiO2 (P25) nanoparticle-based reference cell (η = 5.97%) under the same film thickness. The effective combination of robust light scattering, substantial dye loading, and fast electron transport for the HTs nanostructures is responsible for the remarkable performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.