Abstract

In most industrialized countries, screening programs for cervical cancer have shifted from cytology (Pap smear or ThinPrep) alone on clinician-obtained samples to the addition of screening for human papillomavirus (HPV), its main causative agent. For HPV testing, self-sampling instead of clinician-sampling has proven to be equally accurate, in particular for assays that use nucleic acid amplification techniques. In addition, HPV testing of self-collected samples in combination with a follow-up Pap smear in case of a positive result is more effective in detecting precancerous lesions than a Pap smear alone. Self-sampling for HPV testing has already been adopted by some countries, while others have started trials to evaluate its incorporation into national cervical cancer screening programs. Self-sampling may result in more individuals willing to participate in cervical cancer screening, because it removes many of the barriers that prevent women, especially those in low socioeconomic and minority populations, from participating in regular screening programs. Several studies have shown that the majority of women who have been underscreened but who tested HPV-positive in a self-obtained sample will visit a clinic for follow-up diagnosis and management. In addition, a self-collected sample can also be used for vaginal microbiome analysis, which can provide additional information about HPV infection persistence as well as vaginal health in general.

Highlights

  • Cervical cancer takes the lives of about 250,000 women worldwide each year [1,2,3]

  • The Bethesda system is a cytological classification that describes abnormal findings as negative for intraepithelial lesion and malignancy, atypical squamous cells of undetermined significance, low-grade squamous intraepithelial lesions (LSILs) or high-grade squamous intraepithelial lesions (HSILs) [15,16,17]. Because these classification systems are based on human evaluation via microscopic analysis, and because virtually all cervical cancers are caused by highrisk HPV (hrHPV) [5, 6], it has been proposed that molecular assays detecting DNA or RNA hrHPV markers might provide a better assessment of cancer risk than cytology [11, 17]

  • No reduced sensitivity was found if human papillomavirus (HPV) screening was performed using amplificationbased methods such as PCR. These results suggest that vaginal self-sampling is an good option for women who do not participate in screening programs involving physiciansampling, in particular if self-sampling is combined with DNA amplification, given its improved sensitivity compared against signal-based assays [86]

Read more

Summary

Frontiers in Public Health

In most industrialized countries, screening programs for cervical cancer have shifted from cytology (Pap smear or ThinPrep) alone on clinician-obtained samples to the addition of screening for human papillomavirus (HPV), its main causative agent. HPV testing of self-collected samples in combination with a follow-up Pap smear in case of a positive result is more effective in detecting precancerous lesions than a Pap smear alone. Self-sampling for HPV testing has already been adopted by some countries, while others have started trials to evaluate its incorporation into national cervical cancer screening programs. Self-sampling may result in more individuals willing to participate in cervical cancer screening, because it removes many of the barriers that prevent women, especially those in low socioeconomic and minority populations, from participating in regular screening programs.

INTRODUCTION
CERVICAL CANCER SCREENING PROGRAMS
BARRIERS TO CERVICAL CANCER SCREENING
United Kingdom
Kappa value
Haiti Germany Scotland Papua New Guinea Sweden Netherlands Norway Ghana
THE ROLE OF VAGINAL MICROBIOME ANALYSIS IN HPV DIAGNOSIS AND MONITORING
Findings
DISCUSSION AND CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.