Abstract

Coronary atherosclerosis detected by imaging is a marker of elevated cardiovascular risk. However, imaging involves large resources and exposure to radiation. The aim was, therefore, to test whether nonimaging data, specifically data that can be self-reported, could be used to identify individuals with moderate to severe coronary atherosclerosis. We used data from the population-based SCAPIS (Swedish CardioPulmonary BioImage Study) in individuals with coronary computed tomography angiography (n=25 182) and coronary artery calcification score (n=28 701), aged 50 to 64 years without previous ischemic heart disease. We developed a risk prediction tool using variables that could be assessed from home (self-report tool). For comparison, we also developed a tool using variables from laboratory tests, physical examinations, and self-report (clinical tool) and evaluated both models using receiver operating characteristic curve analysis, external validation, and benchmarked against factors in the pooled cohort equation. The self-report tool (n=14 variables) and the clinical tool (n=23 variables) showed high-to-excellent discriminative ability to identify a segment involvement score ≥4 (area under the curve 0.79 and 0.80, respectively) and significantly better than the pooled cohort equation (area under the curve 0.76, P<0.001). The tools showed a larger net benefit in clinical decision-making at relevant threshold probabilities. The self-report tool identified 65% of all individuals with a segment involvement score ≥4 in the top 30% of the highest-risk individuals. Tools developed for coronary artery calcification score ≥100 performed similarly. We have developed a self-report tool that effectively identifies individuals with moderate to severe coronary atherosclerosis. The self-report tool may serve as prescreening tool toward a cost-effective computed tomography-based screening program for high-risk individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.