Abstract
Biogenic ferrous sulfide nanoparticles (bio-FeS) as low-cost and green-synthesized nanomaterial are promising for heavy metals removal, but the need for complicated extraction, storage processes and the production of iron sludge still restrict their practical application. Here, a self-regenerable bio-hybrid consisting of bacterial cells and self-assembled bio-FeS was developed to efficiently remove chromium (Cr(VI)). A dense layer of bio-FeS was distributed on the cell surface and in the periplasmic space of Shewanella oneidensis MR-1, endowing the bacterium with good Cr(VI) tolerance and unusual activity for bio-FeS-mediated Cr(VI) reduction. An artificial transmembrane electron channel was constituted by the bio-FeS to facilitate extracellular electron pumping, enabling efficient regeneration of extracellular bio-FeS for continuous Cr(VI) reduction. The bio-hybrid maintained high activity within three consecutive treatment-regeneration cycles for treating both simulated Cr(VI)-containing wastewater (50 mg/L) and real electroplating wastewater. Importantly, its activity can be facilely and fully restored through bio-FeS re-synthesis or regeneration with replenished fresh bacteria. Overall, the bio-hybrid merges the self-regeneration ability of bacteria with high activity of bio-FeS , opening a promising new avenue for sustainable treatment of heavy metal- containing wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.