Abstract

The optical properties of a methyl ester homolog of bacteriochlorophylld (BChld M ) and bacteriochlorophyllc (BChlc) in H2O, hexanol-saturated H2O and methanol were studied by absorption, fluorescence emission, and circular dichroism (CD). In H2O, BChld M spontaneously forms an aggregate similar to that formed in hexane, with absorption maximum at 730 nm and fluorescence emission at 748 nm. For the pigment sample in hexanol-saturated H2O, while the absorption peaks at 661 nm, only slightly red-shifted compared to the monomer, the fluorescence emission is highly quenched. When diluted 2-3 fold with H2O, the absorption returns to around 720 nm, characteristic of an aggregate. The CD spectrum of the H2O aggregate exhibits a derivative-shaped feature with positive and negative peaks, while the amplitude is lower than that of chlorosomes. The Fourier transform infrared spectra of BChld M aggregates in H2O and hexane were measured. A 1644 cm(-1) band, indicative of a bonded 13(1)-keto group, is detected for both samples. A marker band for 5-coordinated Mg was observed at 1611 cm(-1) for the two samples as well. To study the kinetic behavior of the samples, both single-photon counting (SPC) fluorescence and transient absorption difference spectroscopic measurements were performed. For BChld M in hexanol-saturated H2O, a fast decay component with a lifetime of 10 to 14 ps was detected using the two different techniques. The fast decay could be explained by the concentration quenching phenomenon due to a high local pigment concentration. For the pigment sample in H2O, SPC gave a 16 ps component, whereas global analysis of transient absorption data generated two fast components: 3.5 and 26 ps. The difference may arise from the different excitation intensities. With a much higher excitation in the latter measurements, other quenching processes, e.g. annihilation, might be introduced, giving the 3.5 ps component. Finally, atomic force microscopy was used to examine the ultrastructure of BChld M in H2O and hexanol-saturated H2O. Pigment clusters with diameters ranging from 15 to 45 nm were observed in both samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.