Abstract

A self-propelled particle model is introduced to study cell sorting occurring in some living organisms. This allows us to evaluate the influence of intrinsic cell motility separately from differential adhesion with fluctuations, a mechanism previously shown to be sufficient to explain a variety of cell rearrangement processes. We find that the tendency of cells to actively follow their neighbors greatly reduces segregation time scales. A finite-size analysis of the sorting process reveals clear algebraic growth laws as in physical phase-ordering processes, albeit with unusual scaling exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.