Abstract

Self-propagating synthesis of Ti-Al-C powder mixture was used for fabrication of master alloys suited to industrial scale manufacturing of Al-TiC composites. The cold compacted powder pellets were heated in a protective atmosphere until the melting point of aluminium. Then the temperature of pellets increased rapidly due to intense exothermic reaction between molten Al and Ti, resulting in simultaneous formation of Al3Ti and Al4C3. When the temperature exceeded ~1090°C, TiC particles started to form as a result of the mutual reaction between Al3Ti and Al4C3. Resulting reaction products consisted of fine (~Subscript textub>2µm) TiC particles uniformly distributed in the Al matrix. The composition of powder mixture was optimized to attain master alloy pellets containing ~50 vol.% TiC. Such pellets were then diluted in molten aluminium to produce Al+TiC composites. In-situ formation of TiC in Al matrix provided favourable interfacial quality, which avoided dewetting and rejection of particles from molten aluminium. The parameters for composite casting were optimized in order to reduce the effect of reversible reaction leading to undesired formation of Al3Ti or Al4C3. The final composites showed significantly increased Young’s modulus and strengths. The potential of using the approach for the fabrication of fine, nearly spherical TiC particulate reinforced Ti composites is briefly discussed. The simple process is very promising for economical manufacturing of highly efficient lightweight structural materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.