Abstract
An energy crisis, resulting from rapid population growth and advancements in the Internet of Things, has increased the importance of energy management strategies. Conventionally, energy management is conducted using sensors; however, additional energy is required to maintain sensor operation within these systems. Herein, an all-fiber-based triboelectric nanogenerator with O2 plasma treatment, graphene oxide/tannic acid solution coating, and hexane/1-octadecanethiol solution coating (AFT-OGH) is fabricated to implement a self-powered sensor, generating a high electrical power density, of 0.35 W/m2, with high stability. Using the AFT-OGH and inductors, self-powered wireless communication in real-time is implemented, achieving a communication distance of 180 cm. Based on these developments, a triboelectricity-driven multiple-input-single-output (T-MISO) system is demonstrated for the first time. An AFT-OGH-driven self-powered T-MISO occupancy detection system (AS-MODS) is implemented to determine the presence of a user in a specific space by developing a unique algorithm for automatically controlling LEDs using triboelectric signals. Considering these results, the proposed AS-MODS is expected to serve as a smart energy management system in the near future, owing to its great ability to control energy consumption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have