Abstract

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call