Abstract

The polydopamine nanoparticles (PDA NPs) as a self-polymerized form of dopamine have occurred with growing interest in biomedical applications in late years. Its natural-inspired feature as a conjugated polymer endows excellent inactivating capability for radical species to PDA-based nanoparticles that provide a theoretical foundation for applications in preventing inflammation-mediated acute kidney injury (AKI) from ROS. Here, we develop a polydopamine wrapped manganese ferrite nanoparticles (PDA@MF NPs) strategy for acute kidney injury therapy by synergistically scavenging ROS and producing O2, which further regulates macrophages amounts by decreasing M1-type and increasing M2-type. Water-soluble PDA@MF NPs were prepared in one step after the oxidative and self-polymerized process of the dopamine monomer. Here, the biodegradable PDA NPs were applied to scavenge ROS. MF NPs undertake continuous O2 production in an H2O2-based hypoxic environment. Based on this system, we aim to relieve the hypoxia, pathological symptoms, and inflammation via scavenging ROS during the O2 production process, and effective polarization to M2-type macrophages. PDA@MF NPs in this study were verified could significantly attenuate oxidative stress in vivo, reduce inflammatory events in renal, and improve renal function, which might be a potential treatment to inhibit oxidative damages and inflammatory events in renal AKI disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.