Abstract

A realistic and effective model to simulate phoretic Brownian dynamics swimmers based on the general form of the thermophoretic force is here presented. The collective behavior of self-phoretic dimers is investigated with this model and compared with two simpler versions, allowing the understanding of the subtle interplay of steric interactions, propulsion, and phoretic effects. The phoretic Brownian dynamics method has control parameters which can be tuned to closely map the properties of experiments or simulations with explicit solvent, in particular those performed with multiparticle collision dynamics. The combination of the phoretic Brownian method and multiparticle collision dynamics is a powerful tool to precisely identify the importance of hydrodynamic interactions in systems of self-phoretic swimmers.Graphic

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.