Abstract

Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.