Abstract

The change in electrical resistance due to mechanical deformation of carbon nanotube (CNT)/polymer composites can be rationalized in terms of two effects: (i) changes in the composite electrical resistivity due to changes in the CNT network configuration and (ii) deformation of the CNTs themselves. The contribution of CNT dimensional changes (ii) to the piezoresistivity of CNT/polymer composites is investigated here. An analytical model based exclusively on dimensional changes which describes the CNT change of electrical resistance in terms of its mechanical deformation is proposed. A micromechanics approach and finite element analysis are performed to correlate the macroscale composite strain to the individual CNT strain. The CNT change of electrical resistance is quantified for different matrix elastic moduli and CNT weight fractions. The CNT/polymer composite is also modeled as an effective continuum material in terms of both its electrical and mechanical responses so that the effect of dimensional changes on the global piezoresistivity can be investigated. Based on the modeling predictions and previous experimental results, it is estimated that the CNT change of resistance due to the macroscale composite strain is marginal (∼5%) compared to the total composite change of resistance commonly measured in the laboratory, suggesting that the dominant effect in the piezoresistivity of CNT/polymer composites is the change in the CNT network configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call