Abstract

Abstract Touch-free gesture technology opens new avenues for human–machine interaction. We show how self-organizing maps (SOM) can be used for hand and full body tracking. We use a range camera for data acquisition and apply a SOM-learning process for each frame in order to capture the pose. In a next step we introduce an extension of the SOM to 1D and 2D segments for an improved representation and skeleton tracking of body and hand. The proposed SOM based algorithms are very efficient and robust, and produce good tracking results. Their efficiency allows to implement these algorithms on embedded systems, which we demonstrate on an ARM-based embedded platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.