Abstract
Mammalian embryonic development is a complex process driven by self-organization. Understanding how a fertilized egg develops into an embryo composed of more than 200 cell types in precise spatial patterns remains one of the fundamental challenges in biology. Pluripotent stem cells have been used as in vitro models for investigating mammalian development, and represent promising building blocks for regenerative therapies. Recently, sophisticated stem cell-based models that recapitulate early embryonic fate patterning and morphogenesis have been developed. In this article, we review recent advances in stem cell models of embryos in particular focusing on signaling activities underpinning cell fate decisions in space and time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.