Abstract

A new one-dimensional electron gas, metallic over a temperature range of 1-800 K, is predicted on the kappa-Al2O3(001;) surface by means of density-functional theory (DFT) calculations. The robustness against the Peierls instability is tested using a tight-binding model with DFT-calculated parameters. The critical transition temperature T(c) is shown to be smaller than 1 K. The low value of T(c) makes this system suited for studying Luttinger-liquid (LL) behavior. For future experiments, the LL parameters are estimated, yielding a high electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.