Abstract

Many nanotechnological applications necessitate a high density of nanoparticles (NPs), making NP morphology control highly challenging. In this work, the morphology of bimetallic NPs formed by magnetron sputtering deposition of a Fe(3 nm)-Au(2 nm) bilayer film on an amorphous silica substrate is analyzed using high-angle dark-field scanning transmission electron microscopy (HAADF-STEM). While all the NPs adopt a Fe-Au core-shell chemical order, they can be sorted into three different types. Isolated NPs, displaying either a highly symmetric centered core geometry (CC-type) or an asymmetrical off-centered core geometry (OC-type), are observed despite the rather large metallic volume. The majority of the NPs however displays a multicore geometry, with Fe cores in the 10-12 nm range, larger than the NPs observed in a pure Fe (3nm) film grown under identical conditions. The driving forces leading to the different morphologies are discussed together with the role played by the environnement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call