Abstract
WC-(Fe-Mn-C) composites with γ-iron and γ + α’ matrices were sintered and then tested at sliding speeds in the range 7–37 m/s. The coefficient of friction was exponentially reduced as a function of sliding speed reaching its minimum at 37 m/s. This behavior was provided by the mechanochemical formation of iron tungstate FeWO4 on the worn surfaces of composite samples. The lubricating effect of iron tungstate did not, however, allow for a reduction in wear. The worn surface was represented by a 3–10 μm-thickness tribological layer composed of fine WC and iron particles cemented by FeWO4. This layer provided the self-lubricating effect in high-speed (high-temperature) sliding because of its easy shear and quasi-viscous behavior. The underlying 25–65 μm of thickness layer was composed of only heat-affected WC and recrystallized iron grains.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have