Abstract

The generation and further linear and nonlinear dynamics of planetary magnetized Rossby waves (MRWs) in the rotating dissipative ionosphere are studied in the presence of a zonal wind (shear flow). MRWs are caused by interaction with the spatially nonuniform geomagnetic field and are ionospheric manifestations of ordinary tropospheric Rossby waves. A simplified self-consistent set of model equations describing MRW-shear flow interaction is derived on the basis of complete equations of ionospheric magnetohydrodynamics. Based on an analysis of an exact analytical solution to the derived dynamic equations, an effective linear mechanism of MRW amplification in the interaction with nonuniform zonal wind is ascertained. It is shown that operators of linear problems are non-self-adjoint in the case of shear flows, and the corresponding eigenfunctions are nonorthogonal; therefore, the canonically modal approach is of little use when studying such flows; a so-called nonmodal mathematical analysis is required. It is ascertained that MRWs effectively get shear flow energy during the linear stage of evolution and significantly increase (by several orders of magnitude) their energy and amplitude. The necessary and sufficient condition of shear flow instability in an ionospheric medium is derived. Nonlinear self-localization begins with the development of shear instability and an increase in the amplitude, and the process ends with the self-organization of strongly localized isolated large-scale nonlinear vortex structures. Thus, a new degree of freedom and a way for perturbation evolution to occur appear in medium with shear flow. The nonlinear systems can be a pure monopole vortex, a vortex streets, or vortex chains depending of the shape of the sheared flow velocity profile. The accumulation of such vortices in the ionospheric medium can produce a strongly turbulent state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.