Abstract

We investigate the nonlinear refraction induced by Rydberg excitons in Cu_{2}O. Using a high-precision interferometry imaging technique that spatially resolves the nonlinear phase shift, we observe significant shifts at extremely low laser intensity near each exciton resonance. From this, we derive the nonlinear index n_{2}, present the n_{2} spectrum for principal quantum numbers n≥5, and report large n_{2} values of order 10^{-3} mm^{2}/mW. Moreover, we observe a rapid saturation of the Kerr nonlinearity and find that the saturation intensity I_{sat} decreases as n^{-7}. We explain this with the Rydberg blockade mechanism, whereby giant Rydberg interactions limit the exciton density, resulting in a maximum phase shift of 0.5rad in our setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call