Abstract

We study the Rydberg exciton absorption of Cu_{2}O in the presence of free carriers injected by above-band-gap illumination. Already at plasma densities ρ_{EH} below one hundredth electron-hole pair per μm^{3}, exciton lines are bleached, starting from the highest observed principal quantum number, while their energies remain constant. Simultaneously, the band gap decreases by correlation effects with the plasma. An exciton line loses oscillator strength when the band gap approaches its energy, vanishing completely at the crossing point. Adapting a plasma-physics description, we describe the observations by an effective Bohr radius that increases with rising plasma density, reflecting the Coulomb interaction screening by the plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call