Abstract
<p style='text-indent:20px;'>We prove higher Sobolev regularity for bounded weak solutions to a class of nonlinear nonlocal integro-differential equations. The leading operator exhibits nonuniform growth, switching between two different fractional elliptic "phases" that are determined by the zero set of a modulating coefficient. Solutions are shown to improve both in integrability and differentiability. These results apply to operators with rough kernels and modulating coefficients. To obtain these results we adapt a particular fractional version of the Gehring lemma developed by Kuusi, Mingione, and Sire in their work "Nonlocal self-improving properties" <i>Analysis &amp; PDE</i>, 8(1):57–114 for the specific nonlinear setting under investigation in this manuscript.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.