Abstract
We study the propagation of orbital angular momentum (OAM) modes in rectangular multimode waveguides. Due to the multimode interference effect, an OAM mode input forms self-images at certain propagation distances. As OAM modes can be decomposed as the superposition of a pair of quarter-wave phase-shifted even and odd modes, their symmetry properties lead to two different self-imaging categories - forming the OAM-maintaining and the field-splitting self-images. We analyze these phenomena using multimode interference theory, and establish the rules governing the OAM-maintaining self-imaging, which allows the multi-mode interference waveguides to be used as OAM mode splitters and couplers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.