Abstract

The self-ignition of coal dust deposits and its subsequent smoldering combustion pose a high fire hazard to oxy-fuel power systems which burn fuels using pure oxygen for the sake of carbon capture and storage. The increasing risk of explosion in the gas-phase and self-ignition in the solid-phase for an oxygen enhanced combustion environment has not been well studied yet. In this work, the heterogeneous reactions of a bituminous coal dust are investigated by using a novel hot-basket apparatus with an emphasis on the roles of O2 and diluent gas in chemisorption and smoldering. Experiments show that increasing O2 mole fraction accelerates both self-ignition and the following smoldering combustion. On the other hand, the presence of CO2 increases the ignition temperature and reduces the maximum smoldering temperature. However, the promotion in the fire and explosion risk by elevating O2 mole fraction is substantially stronger than the retardation effected by presence of CO2. The emission-gas measurements show that the CO to CO2 ratio increases significantly after self-ignition, and CH4 counts for 1–8% of the total carbon emission. This research may help improve the understanding of heterogeneous coal combustion and the fire safety in oxy-fuel power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call