Abstract

This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.