Abstract

The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. However, it is challenging to obtain high-level self-healing of sensitivity and durability of bifunctional sensor when maintaining their long-term fatigue-resistance and high stretchability. Herein, a high performance self-healable bifunctional sensor was demonstrated through synergistic dynamic interactions between polysiloxane and silver nanoflakes (AgFs) and in-situ formed silver nanoparticles (AgNPs). The bifunctional sensor showed high sensitivity (gauge factor reached 39.5), exceptional electrical self-healability (at ambient temperature), and durability (more than 1000 cycles) by virtue of superflexible siloxane chains in the self-healing polymer, strong dynamic silver-thiolate coordination interactions, and the migration of silver nanoparticles. Finally, multiple human motions and health status were monitored, even after multiple cycles of healing, these “self-healed” sensing signals were still extremely consistent with the pristine ones, indicating the excellent reliabilities and healing stabilities of the bifunctional sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call