Abstract
With the background of the fossil fuel energy crisis, the development of self-healing and recyclable polymer materials has become a research hotspot. In this work, a kind of cross-linking agent with pendent furan groups was first prepared and then used to produce the Polyurethane elastomer based on Diels-Alder chemistry (EPU-DA). In addition, in order to further enhance the mechanical properties of the elastomer, cellulose nanofibers (CNFs) were added into the Polyurethane system to prepare a series of composites with various contents of CNF (wt% = 0.1~0.7). Herein, the FTIR and DSC were used to confirm structure and thermal reversible character. The tensile test also indicated that the addition of CNF increased the mechanical properties compared to the pure Polyurethane elastomer. Due to their reversible DA covalent bonds, the elastomer and composites were recycled under high-temperature conditions, which extends Polyurethane elastomers' practical applications. Moreover, damaged coating can also be repaired, endowing this Polyurethane material with good potential for application in the field of metal protection.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have