Abstract
A series of CO2-based thermoplastic polyurethanes (TPUs) were prepared using CO2-based poly(polycarbonate) diol (PPCDL), 4,4'-methylenebis (cyclohexyl isocyanate) (HMDI), and polypropylene glycol (PPG and 1,4-butanediol (BDO) as the raw materials. The mechanical, thermal, optical, and barrier properties shape memory behaviors, while biocompatibility and degradation behaviors of the CO2-based TPUs are also systematically investigated. All the synthesized TPUs are highly transparent amorphous polymers, with one glass transition temperature at ~15-45 °C varying with hard segment content and soft segment composition. When PPG is incorporated into the soft segments, the resultant TPUs exhibit excellent self-healing and shape memory performances with the average shape fixity ratio and shape recovery ratio as high as 98.9% and 88.3%, respectively. Furthermore, the CO2-based TPUs also show superior water vapor permeability resistance, good biocompatibility, and good biodegradation properties, demonstrating their pretty competitive potential in the polyurethane industry applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.