Abstract
Systems of self-gravitating fermions constitute a topic of great interest in astrophysics, due to the wide field of applications. In this paper, we consider the gravitational equilibrium of spherically symmetric Newtonian models of collisionless semidegenerate fermions. We construct numerical solutions by taking into account the effects of the anisotropy in the distribution function and considering the prevalence of tangential velocity. In this way, our models generalize the solutions obtained for isotropic Fermi-Dirac statistics. We also extend the analysis to equilibrium configurations in the classical regime and in the fully degenerate limit, recovering, for different levels of anisotropy, hollow equilibrium configurations obtained in Maxwellian regime. Moreover, in the limit of full degeneracy, we find a direct expression relating the anisotropy with the mass of the particles composing the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.