Abstract
In this paper we study the equilibrium configurations of anisotropic self-gravitating fermions, by extending to general relativity the solutions obtained in a previous paper. This treatment also generalizes to anisotropic systems the relativistic self-gravitating Fermi gas model, by considering different degrees of anisotropy. We discuss some important characteristics of the models and the obtained density profiles, and generalize the relation between the anisotropy and the mass of particles in the relativistic regime. These relativistic models may also be applied to the study of superdense neutron stars with anisotropic pressure or super-Chandrasekhar white dwarfs generated by the presence of a magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.