Abstract
We have developed a simple and reliable method for the fabrication of sub-10 nm wide nanogaps. The self-formed nanogap is based on the stoichiometric solid-state reaction between metal and silicon atoms during the silicidation process. The nanogap width is determined by the metal layer thickness. Our proposed method can produce symmetric and asymmetric electrode nanogaps, as well as multiple nanogaps within one unique process step, for potential application to biological/chemical sensors and nanoelectronics, such as resistive switches, storage devices, and vacuum channel transistors. This method provides high throughput and it is suitable for large-scale production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.