Abstract

The Zakharov-Kuznetsov equation describing Korteweg–de Vries waves and solitons in a strong, uniform magnetic field is rederived taking space stretching to be isotropic. This equation is then used to investigate nonlinear waves and solitons for long-wave instabilities. A solid angle of instability develops around the plane perpendicular to the magnetic field. For weakly nonlinear waves this angle is very narrow: widening as the amplitude of the nonlinear wave is increased. The soliton wave is unstable for all directions other than parallel to the field. Previous results of other authors, limited to solitons and perpendicular propagation are recovered. Calculations are illustrated by polar diagrams for the perturbations. Some broader implications are pointed out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.