Abstract

In this paper, the effects of external tapered axial magnetic field and plasma density-ramp on the spatiotemporal evolution of the laser pulse in inhomogeneous plasma have been studied. The external magnetic field can modify the refractive index of plasma and consequently intensifies the nonlinear effects. By considering the relativistic nonlinearity effect, self-focusing and self-compression of the laser beam propagating through the magnetized plasma have been investigated, numerically. Numerical results indicate that self-focusing and self-compression are better enhanced in a tapered magnetic field than in a uniform one. Besides, in plasma density-ramp profile, self-focusing and self-compression of the laser beam improve in comparison with no ramp structure. In addition, with increasing both the slope of the density ramp and slope constant parameter of the tapered magnetic field, the laser focusing increases, properly, in short distances of the laser propagation through the plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.