Abstract

The lack of direct insight into the microstructural evolution of catalytic materials under electrochemical polarization has inhibited the development of heterogeneous catalysts. By investigating a typical Au@Pd core-shell nanostructure, the present study discloses the microstructural evolution of heterogeneous catalytic materials during the methanol electrooxidation reaction (MOR). The electrocatalytic activity of the as-prepared Au@Pd_core-shell nanoparticles continuously increased during the first 100 successive voltammetry cycles of the MOR. Microstructural characterization studies revealed that during the MOR, an Au/Pd mixed bimetallic shell was formed by the self-driven microstructural evolution of the Au@Pd_core-shell nanoparticles. Both the experimental and calculation results indicated that the Au/Pd mixed bimetallic shell reduced the binding strength of OH- and CO on the catalyst surface. The exposed Au atoms in the shell region also produced large-scale reactive ˙OH radicals that facilitated the oxidative removal of the adsorbed carbonaceous species from the adjacent Pd active sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call