Abstract

Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field. These features can accelerate the hot electron generation in graphene, forming a directional diffusion current. Accordingly, the artificial GPDs exhibit a wavelength-dependence behavior covering the wavelength range from 0.8 to 1.6 μm, with three photoresponse maxima corresponding to the nanostructures' resonances. Additionally, the polarization-dependent GPDs can realize a responsivity of ∼25 mA/W and a noise equivalent power of ∼0.44 nW/Hz1/2 at zero bias when excited at the resonance of 1.4 μm. Overall, our study offers a new strategy for preparing compact and multifrequency infrared GPDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.