Abstract
In this article, a complementary sliding mode (CSM) controller using a self-constructing Chebyshev fuzzy recurrent neural network (SCCFRNN) is proposed for harmonic suppression control of an active power filter (APF). The SCCFRNN whose structure can be automatically learned through the designed structure self-learning algorithm is introduced to approximate the unknown nonlinear term in the APF dynamic model, so as to improve modeling accuracy and reduce the burden of CSM control (CSMC). The SCCFRNN combines the advantages of a fuzzy neural network (FNN), recurrent neural network (RNN), and Chebyshev neural network (CNN), and all parameters can be adjusted according to the designed adaptive laws. Eventually, through detailed simulation, hardware experiments, and fair comparison, the feasibility and superiority of the proposed control algorithm were verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.