Abstract

A recurring problem in quantum mechanics is to estimate either the state of a quantum system or the measurement operator applied to it. If we wish to estimate both, then the difficulty is that the state and the measurement always appear together: to estimate the state, we must use a measurement; to estimate the measurement operator, we must use a state. The data of such quantum estimation experiments come in the form of measurement frequencies. Ideally, the measured average frequencies can be attributed to an average state and an average measurement operator. If this is not the case, we have correlated state-preparation-and-measurement (SPAM) errors. We extend some tests developed to detect such correlated errors to apply to a cryptographic scenario in which two parties trust their individual states but not the measurement performed on the joint state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call