Abstract

The electronic structure of surfaces and interfaces plays a key role in the properties of quantum devices. Here, we study the electronic structure of realistic Al/InAs/Al heterojunctions using a combination of density functional theory with hybrid functionals and state-of-the-art quasiparticle GW (QSGW) calculations. We find a good agreement between QSGW calculations and hybrid functional calculations, which themselves compare favorably well with angle-resolved photoemission spectroscopy experiments. Our paper confirms the need for well-controlled quality of the interfaces to obtain the needed properties of InAs/Al heterojunctions. A detailed analysis of the effects of spin-orbit coupling on the spin splitting of the electronic states shows a linear scaling in k space, related to the two-dimensional nature of some interface states. The good agreement by QSGW and hybrid functional calculations opens the door towards trustable use of an effective approximation to QSGW for studying very large heterojunctions. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.