Abstract
In low-pressure radio-frequency (RF) discharges, the electron-energy distribution function (EEDF) is typically non-Maxwellian for low plasma density. The nonlocal plasma conductivity, plasma density profiles, and EEDF are all nonlinear and nonlocally coupled. For accurate calculation of the discharge characteristics, the EEDF needs to be computed self-consistently. The method of fast self-consistent one-dimensional of planar inductively coupled discharges driven by a RF electromagnetic field is presented. The effects of a non-Maxwellian EEDF, plasma nonuniformity, and finite size, as well as the influence of the external magnetic field on the plasma properties are considered and discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.