Abstract
We report on the self-catalyzed growth of InAs nanowires by molecular beam epitaxy on GaAs substrates covered by a thin silicon oxide layer. Clear evidence is presented to demonstrate that, under our experimental conditions, the growth takes place by the vapor–liquid–solid (VLS) mechanism via an In droplet. The nanowire growth rate is controlled by the arsenic pressure while the diameter depends mainly on the In rate. The contact angle of the In droplet is smaller than that of the Ga droplet involved in the growth of GaAs nanowires, resulting in much lower growth rates. The crystal structure of the VLS grown InAs nanowires is zinc blende with regularly spaced rotational twins forming a twinning superlattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.