Abstract

Uricase-based therapies are limited for gout partially due to the accumulation of H2O2 in an arthrosis environment with slow metabolism. To tackle this limitation, previous studies adopted a cascade reaction between the degradation of uric acid (UA) and timely elimination of H2O2 using complicated composites of uricase and catalase (CAT)/CAT-like nanozyme. Herein, the self-cascade nanozyme Pt/CeO2 with high efficiency toward simultaneous UA degradation and H2O2 elimination is demonstrated on the basis of both uricase- and CAT-like activities in Pt, Ir, Rh, and Pd platinum-group metals. With an optimized molar ratio of Pt and CeO2, Pt/CeO2 (1/5) not only does better in degrading UA but also has excellent reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenging activities. In monosodium urate (MSU)-induced acute gout rats, Pt/CeO2 nanozyme markedly alleviates pain along with joint edema, thus improving gait claudication and tissue inflammation. These results provide novel insights into strategies of an efficient enzyme-mimetic treatment for gout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.