Abstract

Tunicate cellulose, extracted from the marine animal, has drawn increasing attention as the high crystallinity and aspect ratio. However, it is hard to prepare tunicate cellulose nanocrystals (tCNCs) with narrow size distribution in the traditional way, especially for the carboxylated samples, which also affects their lyotropic liquid crystal behavior to a certain extent. Herein, carboxylated tCNCs with uniform nanoscale dimensions and high surface charges density were prepared through ammonium persulfate (APS) oxidation and ultrasonic post-processing. Of particular interest, the formation of carboxylated tCNCs lyotropic chiral nematic liquid crystals was observed for the first time, which displayed obvious birefringence and fingerprint texture. Meanwhile, it was found that the critical concentration of phase separation for tCNCs suspension was around 3.5 wt% from the phase diagram. This study provides an efficient way to fabricate carboxylated tCNCs, and the self-assembly properties may lead to great potential applications in constructing advanced functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.