Abstract

Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod–coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that of rod–coil diblock copolymers. The perforated lamella was replaced by the cylinder when frod=0.45, and the lamella was replaced by the perforated lamella when frod=0.5 when the arms A1 and A2 had an equal length and the volume fraction of A3 arm was low enough. Simulations were also performed when the arms A1 and A2 had unequal lengths. These results demonstrate that simple branching in the coil induces interesting microphase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.