Abstract

Here, we report the preparation and self-assembly of amphiphilic polyurethane phosphate ester (PUP) polymers with phospholipid-like structures. The polymers, designed to have a hydrophilic phosphate head and two amphiphilic PPG-IPDI-MPEG (PU) tails were synthesized via coupling and phosphorylation reactions in sequence. These amphiphilic polymers could self-assemble into various interesting nanostructures in aqueous solution, such as spherical, worm-like micelles, vesicles, and large compound vesicles, depending on the hydrophobic chain length of PU tails and the initial polymer concentrations. It was found that the morphology transition is not only caused by the unique molecular structure of amphiphilic polyurethanes, but also influenced by the additional hydrophilic phosphate groups incorporated, which disturb the force balance governing the aggregation structures. This research supplies a new clue for the fabrication of well-defined nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.