Abstract

While self-assembly is a fairly active area of research in swarm intelligence, relatively little attention has been paid to the issues surrounding the construction of network structures. In this paper we extend methods developed previously for controlling collective movements of agent teams to serve as the basis for self-assembly or “growth” of networks, using neural networks as a concrete application to evaluate our approach. Our central innovation is having network connections arise as persistent “trails” left behind moving agents, trails that are reminiscent of pheromone deposits made by agents in ant colony optimization models. The resulting network connections are thus essentially a record of agent movements. We demonstrate our model’s effectiveness by using it to produce two large networks that support subsequent learning of topographic and feature maps. Improvements produced by the incorporation of collective movements are also examined through computational experiments. These results indicate that methods for directing collective movements can be adopted to facilitate network self-assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call