Abstract
An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain simplicity in their decision models, whilst increasing the swarm’s abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm control intelligent agent (shepherd). We first use swarm metrics to recognise the type of swarm that the shepherd interacts with, then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. contents) of the control agent without sacrificing the low computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.