Abstract
A variety of self-assembly procedures have been introduced. An interesting and prospective application of this technology is the manufacturing of heterogeneously integrated electronic circuits. The two main approaches are top-down and bottom-up self-assembly. Top-down self-assembly is a massively parallel approach for assembly and alignment of small but highly functional parts onto a substrate without using additional machinery. This paper discusses a concept where electrostatic forces are used to achieve top-down self-alignment of parts in the micro- and milli scale. This approach is also concievable to accomplish accurate alignment of pre-positioned dies, for example electronic integrated circuits. For this approach complementary and electrically conductive micro-structured patterns serve as alignment structures. Experimental results have verified that it is feasible to accomplish self-assembly and accurate alignment of single micro-structured parts. The alignment forces and kinematics for parts in the range of a few hundred micrometers have been modelled and computed, respectively. Simulations have been performed in Matlab/Simulink. The presented simulation tool along with the experimental results is the first steps towards the modelling and the realisation of a massively parallel assembly approach of dies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.