Abstract

First generation photovoltaics have made significant progress and are nearing their maximum potential. This has largely been accomplished because the materials are well understood, allowing present simulation tools, such as AMPS, wxAMPS, SCAPS, AFORS-HET, and ADEPT to describe their behaviors well. In more complicated materials, the device may physically change during use, as debated concerning CIGS metastabilities, making it difficult to model and design. Even more troublesome are organic photovoltaics that exhibit highly dispersive transport and critical sensitivity to interface recombination and charge transport. The fixed nature of the present photovoltaic simulation tools provides limited insight into experimental results. This paper describes a new software tool based on a stochastic approach to improve modeling of these complex devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.