Abstract

HypothesisAmyloid-forming biofilm proteins of Escherichia coli, namely CsgA and CsgB, can form self-assembled nanofibers on solid surfaces. These proteins can be programmed to form bio-nanomaterials for functional applications. ExperimentsIn this study, the assembly of the CsgA and CsgB protein on solid surfaces was investigated in real time using a quartz crystal microbalance instrument with dissipation monitoring. The assembly kinetics of the CsgA and CsgB proteins in various settings on solid surfaces were investigated. Protein nanowires were investigated using electron microscopy. FindingsCsgA protein polymers and CsgB-added CsgA polymers form densely packed biofilm on gold surfaces, whereas CsgB polymers and CsgA-added CsgB polymers form biofilms with high water-holding capacity according to the dissipation data. Electron microscopy images of nanofibers grown on gold surfaces showed that CsgA and CsgB polymers include thicker nanofibers compared to the nanofibers formed by CsgA-CsgB protein combinations. The resulting nano/microstructures were found to have strong fluorescence signals in aqueous environments and in chloroform while conserving the protein nanowire network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call